数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

H2S分子在含水方解石纳米缝结构中的吸附和解吸数据


方磊1,2刘新荣1,2,3周小涵*1,2张吉禄2Lojain SULIMAN3陈浩2
1 重庆大学煤矿灾害动力学与控制国家重点实验室,重庆4000442 重庆大学土木工程学院,重庆4000453 国家库区地质灾害防治联合工程研究中心(重庆),重庆400045

DOI:10.3974/geodb.2025.08.02.V1

出版时间:2025年8月

网页浏览次数:174       数据下载次数:0      
数据下载量: 无      数据DOI引用次数:

关键词:

Materials Studio软件,等温吸附量,吸附能,吸附热,RDF曲线,扩散系数

摘要:

水合方解石裂缝中表面结合的H2S的保留和扩散特征直接控制其释放倾向。作者首先通过室内试验获取灰岩试件中方解石晶体的物相结构,包括XRD、XPS、FT-IR以及球差原子相,获取方解石晶体的含量占比、晶体结构以及原子排布特征;其次基于室内物相测试结果在Materials Studio软件中建立方解石晶体的狭缝分子模型;最后结合大正则蒙特卡罗(GCMC)和分子动力学(MD)进行分子模拟得到方解石狭缝分子模型中H2S的吸附和解吸扩散数据。室内物相测试委托科学指南针-实验室开展,于2024年11月22日在北京完成。灰岩试件采集于四川省跃龙门隧道附近地层。数值模拟于2025年5月29日在重庆大学完成。数据集内容包括:(1)H2S和H2O吸附不同含水量方解石中氢键数的比较(T=313 K)(表1);(2)在压强为2 MPa或温度为313 K情景下,0.5%、4%方解石纳米缝隙中吸附的H2O和H2S分子沿z轴的密度分布数据(表2-表5);(3)在含水量为0.5%、4%情景下,不同温度下的H2S等温吸附曲线(表6-表7);(4)在温度为313 K,压强为2 MPa情景下,吸附的H2O和H2S在z轴上的密度分布数据(表8);(5)H2S吸附热数据(表9);(6)不同含水量的H2S等温吸附曲线数据(表10);(7)在含水量为0.5%、4%情景下,方解石纳米孔模型中H2S自扩散系数的分子模拟结果(表11-表12)。数据集存储为.xlsx格式,由1个数据文件组成,数据量为61.5 KB。

基金项目:

国家自然科学基金(52374079);重庆市(CSTB2024NSCQ-MSX0195,CYB240036,cstc2024ycih-bgzxm0032)

数据引用方式:

方磊, 刘新荣, 周小涵*, 张吉禄, Lojain SULIMAN, 陈浩. H2S分子在含水方解石纳米缝结构中的吸附和解吸数据[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2025. https://doi.org/10.3974/geodb.2025.08.02.V1.

参考文献:


     [1] Ishizawa, N., Setoguchi, H., Yanagisawa, K. Structural evolution of calcite at high temperatures: Phase V unveiled [J]. Scientific Reports, 2013, 3(1): 2832.
     [2] Morse, J. W., Arvidson, R. S., Lüttge, A. Calcium carbonate formation and dissolution [J]. Chemical Reviews, 2007, 107(2): 342-381.
     [3] Hofmann, S., Voïtchovsky, K., Spijker, P., et al. Visualizing the molecular alteration of the calcite (104)-water interface by sodium nitrate [J]. Scientific Reports, 2016, 6(1): 21576.
     [4] Rapaport, D. C. The Art of Molecular Dynamics Simulation [M]. 2nd ed. Cambridge: Cambridge University Press, 2004.
     [5] Tegethoff, F. W. Calcium carbonate: from the Cretaceous Period into the 21st century [M]. Berlin: Springer-Verlag, 2001.
     [6] Chen, Q. J., Huang, L., Yang, Q., et al. Molecular insights into dual competitive modes of CH4/CO2 in shale nanocomposites: implications for CO2 sequestration and enhanced gas recovery in deep shale reservoirs [J]. Journal of Molecular Liquids, 2024, 415(PB): 126359.
     [7] Zhou, W. N., Zhu, J. D., Fang, J., et al. Phase behaviors of hydrocarbons in confined shale nanopores: insights from molecular simulations [J]. Fuel, 2025, 392: 134965.
     [8] Niu, J. J., Zhang, K. Q. Molecular-scale insights into nanoconfined water-CO2 interactions in geological carbon storage [J]. Chemical Engineering Science, 2024, 299: 120457.
     [9] Aldeghi, M., Ross, G. A., Bodkin, M. J., et al. Large-scale analysis of water stability in bromodomain binding pockets with grand canonical Monte Carlo [J]. Communications chemistry, 2018, 1(1): 214-231.
     [10] Trozzi, C., Ciccotti, G. Stationary nonequilibrium states by Molecular-Dynamics: part 2 [J]. Newtons Law. Physical Review A, 1984, 29: 916-925.
     [11] Zhang, Z. W., Zhang, G. D., Mo, C. P. Study on the microscopic adsorption of sulfur molecules onto {1014} calcite surface [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630.
     [12] Qian, C., Rui, Z. H., Liu, Y. L., et al. Adsorption behavior of CO2/H2S mixtures in calcite slit nanopores for CO2 storage: an insight from molecular perspective [J]. Petroleum Science, 2024, 21: 2444-2456.
     [13] Li, S. Q. A molecular insight into the effect of key ions on the detachment of crude oil from calcite surface: implication for low salinity water flooding in carbonate reservoirs [J]. Journal of Petroleum Science and Engineering, 2022, 208(PC).
     [14] Wang, Y. C., Ding, Z. W., Cao, Z., et al. Molecular simulation of CO2 adsorption on kaolinite: Insights into geological storage of CO2 [J]. Applied Clay Science, 2024, 258: 107495.
     [15] Qian, Y. Y., Yang, H. M. Computational insight into the bioapplication of 2D materials: a review [J]. Nano Today, 2023: 53.
     [16] Berisha, A. Experimental, Monte Carlo and molecular dynamic study on corrosion inhibition of mild steel by pyridine derivatives in aqueous perchloric acid [J]. Electrochem, 2020, 1(2): 188-199.
     [17] Dagdag, O., Hsissou, R., El Harfi, A., et al. Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies [J]. Surfaces and Interfaces, 2020, 18: 100454.
     [18] Tang, Z. J., Wang, P. J., Song, Y. H., et al. Synergistic mechanism and synergistic effect of two structurally complex imidazole derivatives forming a double adsorption layer [J]. Applied Surface Science, 2025, 701: 163239.

数据下载:

序号 数据名 数据大小 操作
1 Adsorp&DesorpH2SCalcite.xlsx 61.60KB
主管单位