数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

285种鸟类在中国生境适宜性与丰富度数据集


陆慧缘1,2张锐1姜琳琳2,3
1 中国科学院西北生态环境资源研究院,兰州7300002 苏州科技大学,苏州2150093 安徽师范大学,芜湖241002

DOI:10.3974/geodb.2025.01.08.V1

出版时间:2025年1月

网页浏览次数:1074       数据下载次数:39      
数据下载量:934.75 MB      数据DOI引用次数:

关键词:

生物多样性,物种分布模型,鸟类,遥感监测

摘要:

中国是世界鸟类种群数量最丰富的国家之一。作者基于E-BIRD与GBIF平台的鸟类观测数据、数字高程模型(DEM)、年降雨量、年均温与蒸散发数据,利用Biomod2平台的GLM、MAXENT、RF及综合模型,研发了285种鸟类在中国生境适宜性与丰富度数据集。该数据集汇集的内容包括苍鹰、八哥、小云雀等共计285种鸟类在2000、2005、2010、2015、2020年的以下数据:(1)生境适宜性;(2)物种丰富度数据。该数据集能够为生物多样性研究、环境评估等研究提供支持。模型验证结果表明数据集具有较高的精度,测试集AUC均值为0.9907,TSS均值为0.9225。数据集空间分辨率为0.05°,时间分辨率为5年。数据集存储为.img、.tif格式,一共由1430个数据文件组成,数据量为5.66 GB(压缩为1个文件,23.9 MB),基于该数据集的论文将发表在《全球变化数据学报(中英文)》2025年第1期。

基金项目:

江苏省教育厅(202210332083Y)

数据引用方式:

陆慧缘, 张锐, 姜琳琳. 285种鸟类在中国生境适宜性与丰富度数据集[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2025. https://doi.org/10.3974/geodb.2025.01.08.V1.

参考文献:

[1] Ding, Z. H., Cao, J. J., Wang, Y. The construction and optimization of habitat networks for urban-natural symbiosis: a case study of the main urban area of Nanjing [J]. Forests, 2023, 14(1): 18.
     [2] Buxton, R. T., Pearson, A. L., Lin, H. Y., et al. Exploring the relationship between bird diversity and anxiety and mood disorder hospitalisation rates [J]. Geo-Geography and Environment, 2023, 10(2): 8.
     [3] Lees, A. C., Haskell, L., Allinson, T., et al. State of the world's birds [J]. Annual Review of Environment and Resources, 2022, 47: 231-260.
     [4] Xu, C. L., Yu, Q., Wang, F., et al. Identifying and optimizing ecological spatial patterns based on the bird distribution in the Yellow River Basin, China [J]. Journal of Environmental Management, 2023, 348: 13-23.
     [5] Lu, H. Y., Shang, Z. Y., Ruan, Y. L., et al. Study on urban expansion and population density changes based on the inverse S-shaped function [J]. Sustainability, 2023, 15(13): 19-35.
     [6] Moller, A. P., Rubolini, D., Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(42): 16195-16200.
     [7] Liu, Z. X., Zhang, W. W., Lu, H. Y., et al. Exploring evolution characteristics of eco-environment quality in the Yangtze River Basin based on remote sensing ecological index [J]. Heliyon, 2023, 9(12): 14-29.
     [8] Zhu, B. R., Verhoeven, M. A., Velasco, N., et al. Current breeding distributions and predicted range shifts under climate change in two subspecies of black-tailed godwits in Asia [J]. Global Change Biology, 2022, 28(18): 5416-5426.
     [9] Virkkala, R., Rajasärkkä, A., Heikkinen, R. K., et al. Birds in boreal protected areas shift northwards in the warming climate but show different rates of population decline [J]. Biological Conservation, 2018, 226: 271-279.
     [10] Rousseau, J. S., Betts, M. G. Factors influencing transferability in species distribution models [J]. Ecography, 2022, 45(7): 13-25.
     [11] Gaul, W., Sadykova, D., White, H. J., et al. Data quantity is more important than its spatial bias for predictive species distribution modelling [J]. PeerJ, 2020, 8: e27.
     [12] Yu, H., Cooper, A. R., Infante, D. M. Improving species distribution model predictive accuracy using species abundance: application with boosted regression trees [J]. Ecological Modelling, 2020, 432: 11-23.
     [13] Thuiller, W., Lafourcade, B., Engler, R., et al. BIOMOD: a platform for ensemble forecasting of species distributions [J]. Ecography, 2009, 32(3): 369-373.
     [14] Neate-Clegg, M. H. C., Horns, J. J., Adler, F. R., et al. Monitoring the world's bird populations with community science data [J]. Biological Conservation, 2020, 248: 7-15.
     [15] Tejeda, I., Medrano, F. eBird as a tool to improve the knowledge of Chilean birds [J]. Revista Chilena de Ornitologia, 2018, 24(2): 85-94.
     [16] Peng, S. Z., Ding, Y. X., Wen, Z. M., et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100 [J]. Agricultural and Forest Meteorology, 2017, 233: 183-194.
     [17] Fick, S. E., Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas [J]. International Journal of Climatology, 2017, 37(12): 4302-4315.
     [18] 彭守璋. 中国1km分辨率逐月平均气温数据集(1901-2023)[DS]. 国家青藏高原数据中心, 2024.
     [19] 彭守璋. 中国1km分辨率逐月降水量数据集(1901-2023)[DS]. 国家青藏高原数据中心, 2024.
     [20] 彭守璋. 中国1km逐月潜在蒸散发数据集(1901-2023)[DS]. 国家青藏高原数据中心, 2024.
     [21] Phillips, S. J., Anderson, R. P., Schapire, R. E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling, 2006, 190(3-4): 231-259.
     [22] Xu, L., Fan, Y., Zheng, J. H., et al. Impacts of climate change and human activity on the potential distribution of Aconitum leucostomum in China [J]. Science of the Total Environment, 2024, 912: 12-27.
     [23] Adeyemo, S. M., Granger, J. J. Habitat suitability model and range shift analysis for American chestnut (Castanea dentata) in the United States [J]. Trees, Forests and People, 2023, 11: 13-25.
     [24] Lobo, J. M., Jiménez-Valverde, A., Real, R. AUC: a misleading measure of the performance of predictive distribution models [J]. Global Ecology and Biogeography, 2008, 17(2): 145-151.
     [25] Zhang, W. W., Liu, Z. X., Qin, K., et al. Long-term dynamic monitoring and driving force analysis of eco-environmental quality in China [J]. Remote Sensing, 2024, 16(6): 22-35.
     

数据下载:

序号 数据名 数据大小 操作
1 HabitatSuitability&Richness2... 24543.18KB
主管单位