数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

基于苍山冷杉树轮晚材最大密度重建的滇西北地区9-10月平均气温数据集(1678-2019)


邓国富1,2李明启*1
1 中国科学院地理科学与资源研究所陆地表层格局与模拟重点实验室,北京1001012 中国科学院大学,北京100049

DOI:10.3974/geodb.2022.04.03.V1

出版时间:2022年4月

网页浏览次数:6435       数据下载次数:46      
数据下载量:2.36 MB      数据DOI引用次数:

关键词:

滇西北,最大晚材密度,苍山冷杉,气温重建,1678-2019

摘要:

作者于2012、2019年的11月在云南省贡山独龙族怒族自治县境内(98.4811°E,27.7835°N,海拔高度3245 m)采集了苍山冷杉 (Abies delavayi Franch.) 的树轮样芯。然后,运用X射线法获取了树轮密度数据。选取27棵树51根样芯的晚材最大密度数据,利用ARSTAN程序去除趋势(采用步长为67%序列长度的样条函数,拟合树木生长趋势)与标准化,建立了1678-2019年的晚材最大密度差值年表。将树轮密度年表与该县1951-2019年气候变量进行相关分析,结果表明晚材最大密度的差值年表与9–10月的平均气温相关性最高。于是利用一元线性回归方程,重建了滇西北地区1678-2019年9-10月的平均气温数据,重建的方差解释量为33%。该重建方程通过了留一法交叉验证,缩减误差值为0.29,表明该重建序列稳定可靠。此外,该重建序列与滇西北邻近地区重建的晚夏平均气温序列相关系数为0.458–0.526。该数据集内容包括:(1)采样点的地理位置数据;(2)树轮样芯的基本统计特征;(3)苍山冷杉晚材最大密度差值年表与滇西北9-10月平均气温重建序列;(4)苍山冷杉晚材最大密度差值年表统计信息;(5)重建所用的1951-2019年格点气温数据。数据集存储为.shp和.xlsx格式,由7个数据文件组成,数据量为56.5 KB(压缩为1个文件,52.5 KB)。数据论文

基金项目:

国家自然科学基金(41977391,41630529,41571194);中华人民共和国科学技术部(2017YFA0603302)

数据引用方式:

邓国富, 李明启*. 基于苍山冷杉树轮晚材最大密度重建的滇西北地区9-10月平均气温数据集(1678-2019)[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2022. https://doi.org/10.3974/geodb.2022.04.03.V1.

邓国富, 李明启. 滇西北地区 1678?2019 年 9-10 月平均气温序列的建立[J]. 全球变化数据学报(中英文), 2022, 6(3): 330-338

参考文献:

[1] Li, M. Q., Huang, L., Yin, Z. Y., et al. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau [J]. International Journal of Biometeorology, 2017, 61(11): 2021-2032.
     [2] Fan, Z. X., Brauning, A., Yang, B., et al. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China [J]. Global and Planetary Change, 2009, 65(1-2): 1-11.
     [3] Li, M. Y., Wang, L., Fan, Z. X., et al. Tree-ring density inferred late summer temperature variability over the past three centuries in the Gaoligong Mountains, southeastern Tibetan Plateau [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 422: 57-64.
     [4] Yin, H., Li M. Y., Huang, L. Summer mean temperature reconstruction based on tree-ring density over the past 440 years on the eastern Tibetan Plateau [J]. Quaternary International, 2021, 571: 81-88.
     [5] Duan, J. P., Ma, Z. G., Li, L., et al. August-September temperature variability on the Tibetan Plateau: past, present and future [J]. Journal of Geophysical Research: Atmospheres, 2019, 124(12): 6057-6068.
     [6] Martinez-Sancho, E., Slamova, L., Morganti, S., et al. The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe [J]. Scientific Data, 2020, 7(1): 1.
     [7] Wang, L., Duan, J. P., Chen, J., et al. Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China [J]. International Journal of Climatology, 2010, 30(7): 972-979.
     [8] Duan, J. P., Zhang, Q. B. A 449 year warm season temperature reconstruction in the southeastern Tibetan Plateau and its relation to solar activity [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(20): 11,578-11,592.
     [9] Xing, P., Zhang, Q. B., Lv L. X. Absence of late-summer warming trend over the past two and half centuries on the eastern Tibetan Plateau [J]. Global and Planetary Change, 2014, 123: 27-35.
     [10]Yin, H., Liu, H. B., Linderholm H. W., et al. Tree ring density-based warm-season temperature reconstruction since A.D. 1610 in the eastern Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 112-120.
     [11] Liang, H. X., Lyu, L. X., Wahab M. A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China [J]. Dendrochronologia, 2016, 37: 1-8.
     [12] Li, M. Y., Duan, J. P., Wang L., et al. Late summer temperature reconstruction based on tree-ring density for Sygera Mountain, southeastern Tibetan Plateau [J]. Global and Planetary Change, 2018, 163: 10-17.
     [13] Cook, E. R., Briffa, K. R., Jones P. D. Spatial regression methods in dendroclimatology: A review and comparison of two techniques [J]. International Journal of Climatology, 1994, 14(4): 379-402.
     [14] Cook, E. R., Kairiukstis, L. A. Methods of Dendrochronology [M]. Dordrecht, Netherlands: Springer Netherlands, 1990: 40-61.
     

数据下载:

序号 数据名 数据大小 操作
0Datapaper_MeanTemp9-10nwYunnan1678-2019.pdf5855.00kb下载
1 MeanTemp9-10nwYunnan1678-2019.rar 52.56KB
主管单位