数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

4年间隔的遥感信息提取中国沿海水产养殖空间分布数据集(1990-2022)


尹玉蒙1张英慧*1胡忠文1徐月2王敬哲3王晨4石铁柱1邬国锋1
1 深圳大学自然资源部大湾区地理环境监测重点实验室,深圳5180602 华中师范大学城市与环境科学学院,武汉4300793 深圳职业技术大学人工智能学院,深圳5180554 生态环境部卫星环境应用中心,北京100094

DOI:10.3974/geodb.2023.09.01.V1

出版时间:2023年9月

网页浏览次数:6525       数据下载次数:312      
数据下载量:23610.76 MB      数据DOI引用次数:

关键词:

中国,水产养殖区,Landsat影像,长时间序列

摘要:

作者应用 1990-2022 年时间序列Landsat遥感影像,基于谷歌地球引擎(Google Earth Engine,GEE)云计算平台,运用多特征的沿海水产养殖区空间信息提取方法,研发得到1990-2022年4年间隔的中国沿海水产养殖空间分布数据。该数据集空间分辨率为30 m,时间分辨率为4年。数据集存储为.tif格式,由99个数据文件组成,数据量为43.4 GB(压缩为 1 个文件,75.6 MB)。数据论文

基金项目:

深圳市科技创新委员会(JCYJ20220818101617037);国家自然科学基金(42201347)

数据引用方式:

尹玉蒙, 张英慧*, 胡忠文, 徐月, 王敬哲, 王晨, 石铁柱, 邬国锋. 4年间隔的遥感信息提取中国沿海水产养殖空间分布数据集(1990-2022)[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2023. https://doi.org/10.3974/geodb.2023.09.01.V1.

尹玉蒙,张英慧,胡忠文等. 中国沿海水产养殖空间分布数据集(1990-2022)研发[J]. 全球变化数据学报(中英文), 2023, 7(2): 215-224.

参考文献:


     [1] FAO. The State of World Fisheries and Aquaculture 2020 [M]. 2020.
     [2] Duan, Y., Tian, B., Li, X., et al. Tracking changes in aquaculture ponds on the China coast using 30 years of Landsat images [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102383.
     [3] Sun, Z., Luo, J., Yang, J., et al. Nation-scale mapping of coastal aquaculture ponds with Sentinel-1 SAR data using Google Earth Engine [J]. Remote Sensing, 2020, 12(18): 3086.
     [4] Wang, M., Mao, D., Xiao, X. M., et al. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021 [J]. Remote Sensing of Environment, 2023: 15.
     [5] Sridhar, P. N., Surendran, A., Ramana, I. V. Auto‐extraction technique‐based digital classification of saltpans and aquaculture plots using satellite data [J]. International Journal of Remote Sensing, 2008, 29(2): 313-323.
     [6] Ottinger, M., Clauss, K., Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments – a review [J]. Ocean & Coastal Management, 2016, 119: 244-266.
     [7] Ren, C., Wang, Z., Zhang, Y., et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016 [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 101902.
     [8] Ottinger, M., Clauss, K., Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data [J]. Remote Sensing, 2017, 9(5): 440.
     [9] Otsu, N. Threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1): 62-66.
     [10] Breiman, L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
     [11] Pearson, K. Contributions to the mathematical theory of evolution [J]. Philosophical Transactions of the Royal Society of London. A, 1894, 185: 71-110.
     [12] Liu, Y., Wang, Z., Yang, X., et al. Satellite-based monitoring and statistics for raft and cage aquaculture in China’s offshore waters [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 91: 102118.
     [13] Zhu, Z., Woodcock, C. E. Object-based cloud and cloud shadow detection in Landsat imagery [J]. Remote Sensing of Environment, 2012, 118: 83-94.
     [14] Xie, H., Luo, X., Xu, X., et al. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction [J]. International Journal of Remote Sensing, 2016, 37(8): 1826-1844.
     [15] Guo, Q., Pu, R., Li, J., et al. A weighted normalized difference water index for water extraction using Landsat imagery [J]. International Journal of Remote Sensing, 2017, 38(19): 5430-5445.
     [16] Peng, Y., Sengupta, D., Duan, Y., et al. Accurate mapping of Chinese coastal aquaculture ponds using biophysical parameters based on Sentinel-2 time series images [J]. Marine Pollution Bulletin, 2022, 181: 113901.
     [17] Virdis, S. G. P. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai Lagoon, Vietnam [J]. Environmental Monitoring and Assessment, 2014, 186(1): 117-133.
     [18] Diniz, C., Cortinhas, L., Pinheiro, M. L., et al. A large-scale deep-learning approach for multi-temporal aqua and salt-culture mapping [J]. Remote Sensing, 2021, 13(8): 1415.
     [19] Gross, J. W., Heumann, B. W. Can flowers provide better spectral discrimination between herbaceous wetland species than leaves? [J]. Remote Sensing Letters, 2014, 5(10): 892-901.
     

数据下载:

序号 数据名 数据大小 操作
0Datapaper_CAP_MA_China_1990-2022.pdf900.00kb下载
1 CAP_MA_China_1990_2022.rar 77491.72KB
主管单位