Dataset List

Vol.|Area

Data Details

A Plot-level Cropping Structure Dataset Based on Integrating Sentinel Images and Phenology Information in Changji Prefecture, Xinjiang Uygur Autonomous Region of China (2020-2024)


YU Lingxiang1WANG Xiaoqin*1ZHANG Hongyu1LIU Hongwei1
1 The Academy of Digital China ( Fujian),Fuzhou University,Fuzhou 350108,China

DOI:10.3974/geodb.2025.10.01.V1

Published:Oct. 2025

Visitors:54       Data Files Downloaded:0      
Data Downloaded: 无      Citations:

Key Words:

cropping structure,crop classification,MSTPI model,multi-source remote sensing features

Abstract:

As an important agricultural production base in China, Changji Prefecture, Xinjiang Uygur Autonomous Region has a diverse agricultural cropping structure and a rich variety of crops. The authors took time-series Sentinel-2 optical and Sentinel-1 radar data to construct a plot-level crop remote sensing classification model (Multi-source Spatial-Temporal-Phenological Integration, MSTPI), then developed a plot-level cropping structure dataset in Changji Prefecture (2020-2024). The data result shows that, wheat and corn dominated in the eastern region, cotton dominated in the western area, while economic crops interspersed in the central and southern regions. The dataset has a spatial resolution of 10 m, and a temporal resolution of 1 year, recording the cropping structure of Changji Prefecture for the 5 years from 2020 to 2024. The dataset is archived in .tif and .txt formats, and consists of 6 files with data size of 245 MB (compressed to one file with 97.8 MB).

Foundation Item:

Department of Science and Technology in Fujian (2023I0007)

Data Citation:

YU Lingxiang, WANG Xiaoqin*, ZHANG Hongyu, LIU Hongwei. A Plot-level Cropping Structure Dataset Based on Integrating Sentinel Images and Phenology Information in Changji Prefecture, Xinjiang Uygur Autonomous Region of China (2020-2024)[J/DB/OL]. Digital Journal of Global Change Data Repository, 2025. https://doi.org/10.3974/geodb.2025.10.01.V1.

References:


     [1] Sun, B. X., Yang, J. J., Fu, R. X., et al. Progress in remote sensing identification of crop planting structure [J]. Science and Technology Innovation and Application, 2023, 13(15): 76-79.
     [2] Tang, H. J., Wu, W. B., Yang, P., et al. Progress in remote sensing monitoring of crop spatial pattern [J]. Chinese Agricultural Science, 2010, 43(14): 2879-2888.
     [3] Guo, J., Bai, J. Y., Ye, Y. K., et al. Multi-source and multi-temporal remote sensing dataset of cash crop cropping structure in Yangling Agricultural Demonstration Area [J]. China Science Data, 2023, 8(2): 334-343.
     [4] Zhang, D. Y., Wu, T. J., Luo, J. C., et al. Spatio-temporal cooperative remote sensing mapping of agricultural cropping structure [J]. Journal of Remote Sensing, 2024, 28(8): 2014-2029.
     [5] Zhao, X. N., Wang, J. C., Li, Y. L., et al. High-resolution (10 m) dataset of multi-crop planting structure on the Loess Plateau during 2018–2022 [J]. Scientific Data, 2025, 12: 123. DOI: 10.1038/s41597-025-05529-0.
     [6] You, N. S., Dong., J. W., Huang, J. X., et al. The 10-m crop type maps in Northeast China during 2017–2019 [J]. Scientific Data, 2021, 8: 41. DOI: 10.1038/s41597-021-00827-9.
     [7] Orynbaikyzy, A., Gessner, U., Conrad, C., Crop type classification using a combination of optical and radar remote sensing data: a review [J]. International journal of remote sensing, 2019, 40(17): 6553-6595.
     [8] Woźniak, E., Rybicki, M., Kofman, W., et al. Multi-temporal phenological indices derived from time series Sentinel-1 images to country-wide crop classification [J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102683.
     [9] Maus, V., Câmara, G., Cartaxo, R., et al. A time-weighted dynamic time warping method for land-use and land-cover mapping [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3729-3739.
     [10] Wang, L. M., Jin, G. W., Xiong, X., et al. Remote sensing mapping method for winter wheat in arable land in finely fragmented agricultural areas [J]. Journal of Agricultural Engineering, 2022, 38(22): 190-198.
     [11] Chen, Y. Q., Wang, X. X., Farmland extraction from UAV remote sensing images based on improved SegFormer model [J]. Journal of the Indian Society of Remote Sensing, 2024: 1-13.
     [12] Zhang, H. Y., Lin, X. Y., Long, J., et al. SegFormer-based cotton planting areas extraction from high-resolution remote sensing images [C]//2023 11th International Conference on Agro-Geoinformatics. IEEE, 2023: 1-6.
     [13] Sakoe, H., Chiba, S., Dynamic programming algorithm optimization for spoken word recognition [J]. IEEE transactions on acoustics, speech, and signal processing, 1978, 26(1): 43-49.
     [14] Long, J., Li, M. M., Wang, X. Q. Integrating spatial details with long-range contexts for semantic segmentation of very high-resolution remote-sensing images [J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
     [15] Bureau of Agriculture and Rural Affairs, Changji Hui Autonomous Prefecture. Letter of reply to proposal No. 64 of the economic construction category of the third session of the 13th CPPCC of the autonomous prefecture [EB/OL]. (2024-05-09) [2025-03-08]. https://www.cj.gov.cn/p126/zxta/20240509/246810.html.
     [16] Kang, X. Y., Huang, C. P., Chen, J. M., et al. The 10-m cotton maps in Xinjiang, China during 2018–2021 [J]. Scientific Data, 2023, 10(1): 688. DOI: 10.1038/s41597-023-02597-5.
     [17] Peng, Q. Y., Shen, R. Q., Li, X. Q., et al. A twenty-year dataset of high-resolution maize distribution in China [J]. Scientific Data, 2023, 10(1): 658. DOI: 10.1038/s41597-023-02461-6.
     [18] Yang, G. X., Li, X. R., Liu, P. Z., et al. Automated in-season mapping of winter wheat in China with training data generation and model transfer [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 202: 422-438.
     [19] Peng, Q. Y., Shen, R. X., Liu, Y. J., et al. A dataset of maize phenology in China from 2001 to 2020 [DB/OL]. National Ecological Science Data Center, 2024. DOI: 10.12199/nesdc.ecodb.rs.2023.012.
     [20] Cheng, T., Yang, G. X. Winter wheat identification dataset at 10-m spatial resolution in China, 2018-2024 [DB/OL]. National Ecological Science Data Center, 2024. DOI: 10.12199/nesdc.ecodb.rs.2023.016.

Data Product:

ID Data Name Data Size Operation
1 PLOTS_CRSP_XJ2020_24.rar 100163.28KB
Co-Sponsors
Superintend