References:
     [1] Wang, Q. X., Liu, W. P., Li, Y. Y., et al. Different regional animal husbandry in Xinjiang snow disaster losses time-frequency characteristics [J]. Journal of Glaciology and Geocryology, 2015, 37(4): 905-915.
     [2] Wei, J. J., Li, N., Wan, Y., et al. Mechanisms and causes of typical snowstorms in Urumqi [J]. Arid Land Geography, 2022, 45(5): 1381-1391.
     [3] He, W. X., Hao, X. H., Liu, F. G., et al. A multi-source information fusion model construction and risk grading study of snowstorm risk assessment on roads in Ili Region [J]. Remote Sensing Technology and Application, 2025, 40(1): 177-191.
     [4] Huo, H., Liu, Y., Maiwulaxia, M. Spatiotemporal distribution characteristics and impact assessment of snow disasters in the Ili region of Xinjiang from 1990 to 2020 [J]. Arid Land Geography, 2024, 47(11): 1828-1840.
     [5] Wang, X., Chu, C. J., Mou, H. Spatial pattern and interannual variation characteristics of snow disaster in Xinjiang [J]. Arid Zone Research, 2020, 37(6): 1488-1495.
     [6] Wang, X. Q., Lu, X. Y., Ma, Y., et al. Study on snow disaster assessment method and snow disaster regionalization in Xinjiang [J]. Journal of Glaciology and Geocryology, 2019, 41(4): 836-844.
     [7] General Administration of Quality Supervision, Inspection and Quarantine of P. R. China, , National Standardization Administration.. Grade of precipitation: GB/T 28592—2012 [S]. Beijing: Standards Press of China, 2012.
     [8] Huang, Y. Y., Dai, X. A., Liu, Y., et al. Research on blizzard disaster risk zoning in Ili region, Xinjiang [J]. Meteorological, Hydrological and Marine Instruments, 2025, 42(2): 104-107.
     [9] Ma, X. F., Huang, X. D., Deng, J., et al. Comprehensive risk assessment of snow disasters in Qinghai Province [J]. Acta Prataculturae Sinica, 2017, 26(2): 10-20.
     [10] Ding, Y. L., Sun, X. R., Gao, Y., et al. Assessment and division of forest snow disaster risk in Inner Mongolia [J]. Arid Zone Research, 2019, 36(2): 486-493.
     [11] Delegerima, Li, Y. P., Meng, X. F., et al. Study of the risk evaluation of snow disaster in pastoral areas of Xilingol League, Inner Mongolia [J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1353-1362.
     [12] Chen, H. J., Yang, J. P., Ding, Y. P., et al. Quantitative assessment of snow risk about livestock in the Qinghai-Tibet Plateau [J]. Journal of Catastrophology, 2022, 37(2): 102-110.
     [13] Li, F., Hou, G. L., E, C. Y., et al. Township unit-based risk assessment of snowstorm hazard in Guoluo Prefecture of Qinghai Plateau [J]. Journal of Natural Disasters, 2014, 23(6): 141-148.
     [14] Miao, A. M., Wang, H. X., Lu, Z. Y. Riskregionalization of blizzard disaster in Shanxi Province based on GIS [J]. Chinese Agricultural Science Bulletin, 2016, 32(20): 133-140.
     [15] Yang, Z. Y., Gokon, H., Yu, Q. Machine learning-based identification and assessment of snow disaster risks using multi-source data: Insights from Fukui prefecture, Japan [J]. Progress in Disaster Science, 2025, 26: 100426.
     [16] Lee, H., Kim, D., Chung, G. Classification of risk levels for snow damage estimation considering socioeconomic factors in South Korea [J]. Applied Water Science, 2024, 14(11): 1-17.
     [17] Xu, Q. X., Huang, F. Y., Mou, S. H., et al. Snow disaster hazard assessment on the Tibetan Plateau based on Copula function [J]. Sustainability, 2023, 15(13): 10639.
     [18] Singh, D., Zhu, Y., Liu, S., et al. Exploring the links between variations in snow cover area and climatic variables in a Himalayan catchment using earth observations and CMIP6 climate change scenarios [J]. Journal of Hydrology, 2022, 608: 127648.
     [19] Sahu, R., Ramsankaran, R., Bhambri, R., et al. Evolution of supraglacial lakes from 1990 to 2020 in the Himalaya Karakoram Region using cloud-based Google Earth Engine platform [J]. Journal of the Indian Society of Remote Sensing, 2023, 51(12): 2379-2390.
     [20] Wang, Q. L., Ma, X. X., Liu, X. X., et al. Mountain torrent disaster risk assessment method and application based on Random Forest [J]. Yellow River, 2022, 44(4): 63-66, 73.
     [21] Bureau of Statistics of Ili Kazak Autonomous Prefecture. Statistical Communiqué of Ili Kazak Autonomous Prefecture on the 2024 National Economic and Social Development [EB/OL].(2025-04-09). https://www.xjyl.gov.cn/xjylz/c112816/202504/67c6814847cb40a0a33773fb1df5466b.shtml.
     [22] Yu, D., Du, H. R., Guo, J., et al. Research of snow disaster risk assessment in the Three-River-Source Area based on multi-source data [J]. Advances in Meteorological Science and Technology, 2023, 13(4): 34-40.
     [23] Zhuang, X. C., Zhou, H. K., Wang, L., et al. Evaluation and cause study on the snow disasters in pastoral areas of Northern Xinjiang [J]. Arid Zone Research, 2015, 32(5): 1000-1006.
     [24] Qian, Y. L., Lv, H. Q., Zhang, Y. H. Application and evaluation of daily meteorological element interpolation method based on ANUSPLIN software [J]. Journal of Meteorology and Environment, 2010, 26(2): 7-15.
     [25] Liu, D., Zhang, L. J., Jiang, S. Y., et al. Hazard prediction and risk regionalization of snowstorms in Northeast China [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2020, 116: 102832.
     [26] Chen, T., Gao, G., Du, X. H., et al. CMIP6 projected changes in snow cover in the Qinghai-Tibet Plateau [J]. Scientia Geographica Sinica, 2024, 44(5): 901-910.
     [27] Wang, H. D., Zhang, X. L., Xiao, P. F., et al. Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data [J]. The Cryosphere, 2023, 17(1): 33-50.
     [28] Zhou, J., Niu, J., Wu, N., et al. Annual high-resolution grazing-intensity maps on the Qinghai-Tibet Plateau from 1990 to 2020 [J]. Earth System Science Data Discussions, 2023, 16(11): 5171-5189.
     [29] Zhang, X. Z., Li, M., Wu, J. S., et al. Alpine grassland aboveground biomass and theoretical livestock carrying capacity on the Tibetan Plateau [J]. Journal of Resources and Ecology, 2022, 13(1): 129-141.
     [30] Yang, S., Li, D. Y., Yan, L. X., et al. Landslide susceptibility assessment in high and steep bank slopes along Wujiang River based on Random Forest Model [J]. Safety and Environmental Engineering, 2021, 28(4): 131-138.
     [31] Huang, C. Y., She, D. X., Liu, X. B., et al. Predicting future meteorological drought risk in mainland China using random forest model [J]. Journal of Hydrology: Regional Studies, 2025, 61: 102633.
     [32] Liang, Z., Wang, C. M., Duan, Z. J., et al. A hybrid model consisting of supervised and unsupervised learning for landslide susceptibility mapping [J]. Remote Sensing, 2021, 13(8): 1464.
     [33] Ruijsch, D., van Mourik, J., Biemans, H., et al. Thrive or wither: exploring the impacts of multiyear droughts on vegetation [J]. Journal of Geophysical Research: Biogeosciences, 2025, 130(7): e2025JG008992.
     [34] Wang, X. X., Wu, Y. H., Luo, M. L., et al. Exports of organic matter, phosphorus and nitrogen from Sichuan Basin: a critical region regulating water quality of the Upper Yangtze River, China [J]. Journal of Hydrology, 2025, 662: 133889.
     [35] Yang, Q., Qin, L., Gao, P., et al. Prediction of maximum snow depth based on RBF network in severe snow disaster area of Xinjiang [J]. Desert and Oasis Meteorology, 2024, 18(1): 89-95.