References:
     [1] Jay, O., Capon, A., Berry, P., et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities [J]. The Lancet, 2021, 398(10301): 709-724.
     [2] Gao, S. J., Chen, Y. H., Chen, D. L., et al. Urbanization-induced warming amplifies population exposure to compound heatwaves but narrows exposure inequality between global North and South cities [J]. npj Climate and Atmospheric Science, 2024, 7(1): 154.
     [3] Stalhandske, Z., Ruiter, M. C. D., Chambers, J., et al. Global assessment of population exposure to multiple climate-related hazards from 2003 to 2021: a retrospective analysis [J]. The Lancet Planetary Health, 2025, 9(8).
     [4] Yin, J. B., Gentine, P., Slater, L., et al. Future socio-ecosystem productivity threatened by compound drought-heatwave events [J]. Nature Sustainability, 2023, 6(3): 259-272.
     [5] Wang, J., Li, M. C., Liu, Y. J., et al. Large-scale climatic drivers for warm-season compound drought and heatwave frequency over North China [J]. Atmospheric Research, 2023, 288: 106727.
     [6] Liu, J. H., Chen, J., Yin, J. B., et al. Time of emergence of record‐shattering compound heatwave‐extreme precipitation events and their socio‐economic exposures [J]. Geophysical Research Letters, 2025, 52(16): e2025GL116884.
     [7] Urraca, R., Cappucci, F., Lanconelli, C., et al. Assessing discrepancies in global aerosol trends from satellites, models and reanalyses [J]. Remote Sensing of Environment, 2025, 328: 114827.
     [8] Martin, G. K., Rojas-Rueda, D., Fong, K. C., et al. A health impact assessment of progress towards urban nature targets in the 96 C40 cities [J]. The Lancet Planetary Health, 2025, 9(4): e284-e293.
     [9] Xie, W. X., Zhou, B. T., You, Q. L., et al. Observed changes in heat waves with different severities in China during 1961-2015 [J]. Theoretical and Applied Climatology, 2020, 141(3): 1529-1540.
     [10] Yin, C., Yang, Y. P., Chen, X. N., et al. Changes in global heat waves and its socioeconomic exposure in a warmer future [J]. Climate Risk Management, 2022, 38: 100459.
     [11] Cai, F. Y., Liu, C. H., Gerten, D., et al. Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere [J]. Nature Communications, 2024, 15(1): 8012.
     [12] Li, X. F., Zhao, L., Wang, S., et al. Unstable permafrost regions experience more severe heatwaves in a warming climate [J]. npj Climate and Atmospheric Science, 2025, 8(1): 147.
     [13] Tian, P., Zhang, F. Q., Yan, Y. Y., et al. Spatial inequalities in global population exposure to extreme heats and heatwaves [J]. Applied Geography, 2025, 174: 103474.
     [14] Wang, C. C., Ren, Z. B., Guo, Y. J., et al. Assessing urban population exposure risk to extreme heat: Patterns, trends, and implications for climate resilience in China (2000-2020) [J]. Sustainable Cities and Society, 2024, 103: 105260.
     [15] Shen, H. J., You, Q. L., Wang, P. L., et al. Analysis on heat waves variation features in China during 1961-2014 [J]. Journal of the Meteorological Sciences, 2018, 38(1): 28-36.