DOI : 10.3974
Home
Submission
Data List
Search
Policy
Documents
Authors
Subscription
Submission Inguiry
Rankings
Sign In
Register
Chinese
|
English
Search
Vol.
Area
No.4 Vol.12,2025
No.3 Vol.12,2025
No.2 Vol.12,2025
No.1 Vol.12,2025
No.12 Vol.11,2024
No.11 Vol.11,2024
No.10 Vol.11,2024
No.9 Vol.11,2024
No.8 Vol.11,2024
No.7 Vol.11,2024
No.6 Vol.11,2024
No.5 Vol.11,2024
No.4 Vol.11,2024
No.3 Vol.11,2024
No.2 Vol.11,2024
No.1 Vol.11,2024
No.12 Vol.10,2023
No.11 Vol.10,2023
No.10 Vol.10,2023
No.9 Vol.10,2023
No.8 Vol.10,2023
No.7 Vol.10,2023
No.6 Vol.10,2023
No.5 Vol.10,2023
No.4 Vol.10,2023
No.3 Vol.10,2023
No.2 Vol.10,2023
No.1 Vol.10,2023
No.12 Vol.9,2022
No.11 Vol.9,2022
No.10 Vol.9,2022
No.9 Vol.9,2022
No.8 Vol.9,2022
No.7 Vol.9,2022
No.6 Vol.9,2022
No.5 Vol.9,2022
No.4 Vol.9,2022
No.3 Vol.9,2022
No.2 Vol.9,2022
No.1 Vol.9,2022
No.12 Vol.8,2021
No.11 Vol.8,2021
No.10 Vol.8,2021
No.9 Vol.8,2021
No.8 Vol.8,2021
No.7 Vol.8,2021
No.6 Vol.8,2021
No.5 Vol.8,2021
No.4 Vol.8,2021
No.3 Vol.8,2021
No.2 Vol.8,2021
No.1 Vol.8,2021
No.9 Vol.7,2020
No.8 Vol.7,2020
No.7 Vol.7,2020
No.6 Vol.7,2020
No.5 Vol.7,2020
No.4 Vol.7,2020
No.3 Vol.7,2020
No.2 Vol.7,2020
No.1 Vol.7,2020
No.6 Vol.6,2019
No.5 Vol.6,2019
No.4 Vol.6,2019
No.3 Vol.6,2019
No.2 Vol.6,2019
No.1 Vol.6,2019
No.8 Vol.5,2018
No.7 Vol.5,2018
No.6 Vol.5,2018
No.5 Vol.5,2018
No.4 Vol.5,2018
No.3 Vol.5,2018
No.2 Vol.5,2018
No.1 Vol.5,2018
No.4 Vol.4,2017
No.3 Vol.4,2017
No.2 Vol.4,2017
No.1 Vol.4,2017
No.9 Vol.3,2016
No.8 Vol.3,2016
No.7 Vol.3,2016
No.6 Vol.3,2016
No.5 Vol.3,2016
No.4 Vol.3,2016
No.3 Vol.3,2016
No.2 Vol.3,2016
No.1 Vol.3,2016
No.2 Vol.2,2015
No.1 Vol.2,2015
No.2 Vol.1,2014
No.1 Vol.1,2014
China
Asia
Oceanic region
African
European
North American
South American
Arctic
Global Scale
Data List
Dataset Title:
A Multi-Source Remote Sensing and Machine Learning Integrated Dataset of Multi-Layer Soil Total Nitrogen Content in Taiyuan, China (2020)
DOI:
10.3974/geodb.2025.04.01.V1
Published:
Apr. 2025
Author(s):
SHAO Xin ,YANG Ting*
Key Words:
GEE,soil total nitrogen,multi-source remote sensing data,machine learning models,
Co-Sponsors
IGSNRR
GSC
Superintend
CAS
Networking
DOI
Crossref
ICSU_CODATA
ICSU-WDS
GEOSS Portal
GEOSS Portal
DCI
Researcher ID
Geomuseum